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The relaxation properties of the Rouse chain with inhomogeneous links have been investigated. The problem
has been solved by direct integration of systems of differential-difference equations which describe the relaxa-
tions of the chain length and stress. It has been shown that these two processes are different in both the set
of relaxation modes and the characteristic of the spectrum. The influence of the chain structure on these pa-
rameters has been demonstrated. The effect of "packing" of the relaxation modes has been revealed; it ap-
pears on introduction of links with an increased coefficient of friction into the chain and manifests itself in
the fact that the high-frequency modes come closer together and even merge, so that their total number be-
comes substantially smaller than that in the case of the Rouse model.

Introduction. The Rouse model suggested for the first time in [2] has found wide application for description
of the relaxation properties of polymer chains [1]. In this representation, the chain consists of sequentially connected
Maxwell elements (links). A significant assumption for calculation of the Rouse model is that the number of links n
is rather large (n >> 1); therefore, the discrete system of differential-difference equations describing the movement of
the links can be represented in continuous form [3–5] as one equation in partial derivatives of second order. It was
shown that the numbers of the relaxation modes and links of the chain are equal, while the relaxation times λi obey
the Rouse relation
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here, the first number of the mode refers to the maximum relaxation time.
It is obvious that for rather short chains the continuity approximation cannot be satisfactory and the discrete-

ness of the system containing a relatively small number of differential equations must be considered in explicit form.
Moreover, it is necessary to allow an arbitrary distribution of the links differing in relaxation characteristics over the
chain. Both these requirements are physically reasonable. Indeed, it is generally believed that a link of the Rouse chain
corresponds in its elastic properties to a Kuhn segment, i.e., it can contain more than ten monomeric links. And this
means that the number of Rouse links in the actual polymer chain is not equal to the number of monomeric links and,
consequently, is not so large as to allow the continuity approximation in solving the kinetic problem. In addition, dif-
ferent chain links in copolymers can have differing relaxation properties. Even the links of homopolymeric macromole-
cules in melts and in concentrated solutions can possess different friction coefficients because of the presence of
density fluctuations.

Generalized Model of Relaxation. Let us consider the relaxation of the chain removed from the equilibrium
state by the force F applied to the first link:
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In this scheme, O denotes the friction element, while ∨∨∨  denotes the elastic element of the chain link.

Journal of Engineering Physics and Thermophysics, Vol. 76, No. 3, 2003

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Russia; email: ir-
zhak@icp.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 76, No. 3, pp. 116–123, May–June, 2003. Original
article submitted September 6, 2002.

1062-0125/03/7603-0610$25.00  2003 Plenum Publishing Corporation610



In the case where the force applied to the first link leads to extension of the chain and then becomes equal
to zero, the chain length decreases, i.e., the strain relaxation occurs. For the stress relaxation, the model assumes that
the force F is applied instantly through a spring with an elastic modulus E (the stress in the spring decreases due to
the displacement of the chain links).

The relaxation of the length of the chain consisting of n links and removed from the equilibrium state is de-
scribed by the system of n differential equations

τ1x
.
1 = − x1 + x2 ,

τ2x
.
2 = x1 − 2x2 + x3 ,

.......... (2)

τix
.
i = xi−1 − 2xi + xi+1 ,

...........

τnx
.
n = xn−1 − xn .

The relaxation characteristics of the links, attributable to the difference in their friction coefficients due to the
interaction with a medium, are described by the parameter τi. Solution of (2) makes it possible to find the equations
of motion for all the chain links and the change in the chain length L = xn − x1 provided that the initial conditions are
specific. As conditions of this kind, we can take L(0) = 1 and xi(0) = (i − 1)/(n − 1).

The kinetics of change in the chain length that can be expressed as the combination of exponentials
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is determined by the roots zi = τipi of the polynomial Dn [7]:
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Transformation of Eq. (3) yields the determinant
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Thus,

Dn = (z1 − 1) Bn−1 − Bn−2 = Bn + Bn−1 = 0 . (5)

The stress relaxation is described by the system of n + 1 equations
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τ1F
.
 = − F + E (x1 − x2) ,

τ1x
.
1 = 

F
E

 − x1 + x2 ,

τ2x
.
2 = x1 − 2x2 + x3 , (6)

.......

τix
.
i = xi−1 − 2xi + xi+1 ,

.........

τnx
.
n = xn−1 − xn .

For the sake of simplicity, it is assumed that the quantity E is identical for all the links, whereas the difference of the
links in the relaxation times, as in the previous case, is caused by that in the friction coefficients. The initial condi-
tions for Eq. (6) are as follows: F(0) = 1 and xi(0) = 0. Solution of system (6) for the stress relaxation
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in the form of a combination of exponentials is determined by the roots zi = τipi of the polynomial
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whose transformation gives

Dn = z1Bn = 0 . (8)

As is seen, Eqs. (5) and (8) are different. This means that the relaxations of strain (of the chain length) and
of stress are characterized by different sets of the relaxation times λi = pi

−1. Numerical solution of Eqs. (5) and (8)
can easily be obtained, since it is possible to represent the determinant Bn in the form of the recurrence series

B1 = zn − 1 ,

B2 = (zn−1 − 2) B1 − 1 ,

B3 = (zn−2 − 2) B2 − B1 , (9)

..........

Bi = (zi − 2) Bi−1 − Bi−2 ,
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..........

Bn = (z1 − 2) Bn−1 − Bn−2 .

The relaxation spectrum hi is calculated by solving the system of equations with the initial conditions

d
k
L

dt
k
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hi ,   

d
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F

dt
k  (t = 0) =  ∑ 

i

 (− 1)k pi
k
hi ,

where k = 0, 1, ..., n − 1.
It should be noted that although the viscoelastic characteristics for the short chains can be obtained by direct

solution of systems (2) and (6), it seems worthwhile to consider the influence of the chain structure on the spectral
characteristics. This is due to the fact that the question of the correlation between the spectrum of relaxation times and
the structure of polymeric chains is the key to establishing a relationship, for example, between the molecular-mass
distribution and the relaxation properties of the polymer. The structure of the macromolecule can be modeled by intro-
ducing the links with different friction coefficients into an oligomeric chain. The solution of Eqs. (5) and (8) for the
corresponding systems makes it possible to calculate the spectrum of relaxation times and in this way to establish its
relationship with the chain structure.

First of all, we will consider the relaxation characteristics of a homogeneous Rouse chain. Figure 1a presents
the results of solution of systems (2) and (6) for an 11-segment chain with identical links in the coordinates of Eq.
(1), which, as is seen from this figure, adequately describes the strain relaxation. At the same time, the stress relaxa-
tion is characterized by the higher values of the times compared to (λi)R. In the case of the chain-length strain, the
spectrum (coefficients hi in the exponential expansion) also corresponds to the well-known Rouse solution
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for the odd values of i; for the even values we have hi = 0 (Fig. 1b). However, for the stress relaxation the spectrum
is quite different: as the value of λi increases, the quantity hi reaches a plateau. This behavior correlates with the well-
known formula hi = 1/n [4] with the only difference being that in the plateau region hi C 2 ⁄ n, although the mean
value of shit is exactly equal to 1/n. Moreover, in contrast to the strain relaxation, all the modes (both the odd modes
and the even ones) contribute to the spectrum.

Fig. 1. Correlation between the relaxation times λi and (λi)R (a) and the relaxa-
tion spectra (b) for the strain relaxation (1, 2) and the stress relaxation (3, 4)
in the case of 10- (1, 3) and 20-link (2, 4) chains.
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Thus, in the present model the Rouse law is satisfied only for the strain relaxation, whereas the stress relaxa-
tion is described by another set of relaxation modes and another relaxation spectrum.

Inhomogeneous (Modified) Rouse Chain. We will represent the inhomogeneous Rouse chain in the form of
a sequence of links with a different friction coefficient, for example, a-b-b-b-b-b-a, where at the ends there are modi-
fied links of the type "a"; the type "b" corresponds to unmodified links. The friction coefficient of a modified link
τa will be expressed in terms of the ratio τa

 ⁄ τ, where τ is the friction coefficient of the "b" link. In this case, it is
convenient to write the relaxation structure of the chain in the form of a set of figures each of which is the value of
the friction coefficient. Thus, for the case τa

 ⁄ τ = 5 the chain has the form 5-1-1-1-1-1-5.
Figure 2a illustrates the relaxation spectra of the chains with end modified links (strain relaxation). As is evi-

dent, the maximum value of the relaxation time (λmax) grows considerably; the greater the λmax, the higher the friction
coefficient of the end link. The symmetric chains (the "a" links at both ends of the chain) are characterized only by
the odd modes, whereas for the asymmetric chains (there is a modified link only at one end of the chain) the number
of modes is equal to that of the chain links minus unity. However, one may notice that the even modes in this case
are also characterized by a relatively lower value of the pre-exponential factor hi, i.e., the curve of the spectrum has
a nonmonotone form which is the more pronounced, the lower the quantity τa

 ⁄ τ.
Modification of both end links and the increase in their friction coefficient make the spectral curve steeper:

the statistical weight of the term with the longest relaxation time virtually becomes equal to unity, while the short
times are characterized by a very low value of the statistical weight (see, for example, curves 1 and 6).

In the case of the stress relaxation, modification of the end links exerts an even stronger influence on the
spectrum behavior. As is evident from the data given in Fig. 2b, the curves are of a monotone nature only in the case
where the first link, to which the force is applied, has the same friction coefficient as middle links of the type "b"
(curves 1, 7, and 8). As this quantity increases, the curves acquire a nonmonotone form; the statistical weight h1 of
the mode with the longest relaxation time λ1 turns out to be smaller than λ2. At the same time, the quantity λ1 vir-
tually is the same for the chains with an identical end link. The quantities λ2 are close for the chains with an identical
first link. The spectral curves in the region of short relaxation times merge together provided that the first links are
identical, while the values of the statistical weights differ by orders of magnitude for the chains whose first links are
different (see, for example, curves 1 and 3 or 8 and 9). Consequently, the spectral characteristics clearly respond to
the structure of the chain.

The inclusion of the links with an increased value of the friction coefficient (of the type "a") into the middle
of the chain leads to a significant change in the set of relaxation modes. As is seen from the data on strain relaxation,
presented in Figs. 3–5, the growth in the number of these links subdividing the chain into the blocks of "b"-type links,
increases the total number of the modes. However, higher-frequency modes are grouped together into "packets", i.e.,
form groups with a close relaxation time, with the relaxation time being the closer, the higher the value of the friction

Fig. 2. Relaxation spectra of 11-link chains with modified end links (the first
and the last) in the regime of strain relaxation (a) and stress relaxation (b): 1)
τa

 ⁄ τ = 1 and 1, 2) 10 and 1, 3) 100 and 1, 4) 10 and 10, 5) 10 and 100, 6)
100 and 100; 7) 1 and 10, 8) 1 and 100 and 9) 100 and 10.
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coefficient of "a"-type links (Fig. 3). In the spectrum of relaxation times of the homogeneous Rouse chain, it is diffi-
cult to assign particular modes to the definite links. The inclusion, into the chain, of "a"-type links differing little in
their relaxation ability from the main links (τa

 ⁄ τ = 2) allows separation of the "packets" of modes, which, being dif-
ferent in value, are noticeably grouped together near the values available in the initial block. As is shown in Fig. 3,
the modes converge the closer, the higher the value of τa

 ⁄ τ. Thus, the links with a high friction coefficient isolate as
it were the blocks from each other and in any chain one can separate modes characterizing links with different relaxa-
tion properties.

From a comparison of the multiblock chains and the "single-block" chain (Fig. 4) it is evident that the high-
frequency modes are grouped near the values characteristic of the corresponding block. The number of the modes en-
tering into the packet turns out to be equal to the number of the blocks. (In Fig. 4, we present the data for τa

 ⁄ τ = 2
so as to differentiate order that the components entering into the packet). In the limit, the growth in the chain length
due to the increase in the number of blocks leads to the fact that the number of modes becomes smaller than the total
number of the links, since the high-frequency modes simply merge together.

Figure 5 presents the frequency characteristics of a 17-link chain with different structure. It is seen that even
a comparatively weak change in the relaxation properties of the links (structure II, τa

 ⁄ τ = 2 for the odd links) causes
a significant increase in the quantity λmax; the formation of two "packets" of relaxation modes in the high-frequency

Fig. 3. Relaxation modes for the structure a-(b-b-b-b-b-a)m. Below the straight
lines, the number of blocks is m = 1; above the straight lines, m = 4: 1)
τa

 ⁄ τ = 1, 2) 2, 3) 5, 4) 10 and 5) 100.

Fig. 4. Relaxation modes for the structure a-(b-b-b-b-b-a)m, τa
 ⁄ τ = 2: 1) m =

1, 2) 2, 3) 3, 4) 4, 5) 5, 6) 6, and 7) 7.

Fig. 5. Relaxation modes for chains with different structures of the block: I) 1-
(1-1-1-1)3-1-1-1-1; II) 2-(1-2-1-2)3-1-2-1-2; III) 100-(1-1-1-100)3-1-1-1-100; IV)
100-(1-2-1-100)3-1-2-1-100; V) 100-(1-10-1-100)3-1-10-1-100. The quantity
τa

 ⁄ τ is denoted by the figures. The number of blocks is denoted by the sub-
script.
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region is observed. If the chain is modified in such a way that there are three mobile links (structure III) between the
"a"-type links (even with a higher value of τa

 ⁄ τ = 100), then the quantity λmin virtually is the same as for the Rouse
chain (structure I). This means that λmin characterizes the high-mobility link between the same links. The decrease in
the mobility of the adjacent links (structures IV and V) leads to a sharp displacement of λmin to the low-frequency
region. Thus, each mode can be assigned to a link of a definite type with account for its immediate surroundings. In
turn, the lowest-frequency modes characterize low-mobility links; the influence of the high-frequency component on
this dependence is very weak: chains III–V containing an identical number of "a" links (τa

 ⁄ τ = 100) demonstrating the
same set of low-frequency modes (four, since the number of blocks is four). It should be noted that in this case no
"packing" is observed.

Similar effects are also observed in the regime of stress relaxation. The subdivision of the chain of homoge-
neous links into blocks by the links with a higher friction coefficient causes the appearance of inhomogeneities in the
relaxation spectrum, even though these blocks have different lengths. Thus, Fig. 6 illustrates the spectra of chains
whose structure is given in Table 1. The appearance of a modified link at the end of the chain increases somewhat
the quantity λmax but decreases the statistical weight of this mode. On the curves of the spectrum, peaks are observed
when the chain is subdivided into the blocks: the number of the peaks is larger when there are two blocks, and their
number is three when there are four blocks in the chain. It is obvious that this is a manifestation of the decrease in
the number of high-mobility links due to the shortening of the sequence of "b" links. Thus, here, too, the relationship
between the spectrum character and the chain structure is seen.

It is well known that the rheological properties of the system (viscosity and stationary compliance) are deter-
mined by the mean values of the relaxation times

sλtn =  ∑ 

i=1

20

 hiλi ,   sλtw = 

∑ 

i=1

20

 hiλi
2

∑ 

i=1

20

 hiλi

Fig. 6. Relaxation spectra of the chains listed in Table 1 under Nos. 1, 2, 3,
and 5.

Fig. 7. Correlation between the molecular mass of the polymer M and the
number of modes in the relaxation spectrum of monodisperse polystyrene N
according to the data of [8].
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and by their ratio γ rather than by the quantity λmax. In Table 2 we present the values of these characteristics for the
chains whose structure is illustrated in Table 1, while the spectral characteristics of some of them are given in Fig. 6
(chains 1–3 and 5) in comparison with the value of the maximum relaxation time, which, as is seen, is significantly
higher than the mean values. The width of the distribution function by relaxation times which is characterized by the
parameter γ also depends on the chain structure. This quantity is the least for the homogeneous chain.

CONCLUSIONS

From the comparison of the results obtained and the data on the relaxation characteristic of high-molecular-
weight polymers it is possible to draw the following conclusions. It is assumed that, because of the large length of the
chains, the relaxation spectrum can be considered as continuous. Only a few attempts to analyze the frequency depend-
ence of the relaxation elastic modulus for determining the relaxation spectrum point to the fact that the latter is ade-
quately characterized by a limited set of modes, the number of which is the larger, the higher the molecular polymer
mass, however, this increase is far from proportionality. Thus, according to the data of [6], the correlation between the
number of modes and the molecular mass is expressed in the form of a logarithmic dependence (Fig. 7). Here, the
spectrum of relaxation times is not described by the Rouse or Doi–Edwards models. For example, in [6] a nonmono-
tonic increase in the pre-exponential factor with growth in the relaxation time was observed: the term with the maxi-
mum time enters with a smaller statistical weight than the previous one. It is possible that these features are of the
same origin as in the case considered in the present work, i.e., the result of the relaxation nonequivalence of the chain
links. This nonequivalence can be understood within the framework of the model of a grid of physical relationships,
according to which some of the chain links are related to other macromolecules by long-lived physical nodes. The rup-
ture of the chain links is accompanied by energy dissipation, which is equivalent to the significantly higher value of
the friction coefficient than that for the links not entering into such nodes. Thus, in solving the problem on estab-
lishing a relationship between the relaxation characteristics of the polymer and its molecular-mass distribution, it is
necessary to take into consideration the possibility of relaxation inhomogeneity of the polymer chains.

As has been shown in the present work, the presence of the links with different relaxation characteristics is
manifested as the set of relaxation modes. It would seem that this fact allows one to consider the Bartenev approach

TABLE 2. Values of the Mean Times of the Stress Relaxation for the 20-Link Chains

Number of the chain λmax <λ>n <λ>w γ
1 170.4 20 143.5 7.175

2 261.4 25 219.8 8.79

3 257.0 27 228.0 8.44

4 281.9 32 238.5 7.45

5 330.8 36 282.0 7.83

6 392.9 40 336.95 8.42

TABLE 1. Block Structure of the 20-Link Chains

Number of the chain Structure of the chain

1 F ← (1)20

2 F ← (1)19-5

3 F ← (1)6-5-(1)12-5

4 F ← (1)6-5-(1)6-5-(1)8-5

5 F ← (1)3-5-(1)4-5-(1)6-5-(1)3-5

6 F ← (1)3-5-(1)4-5-(1)5-5-(1)2-5-1-5

Note: The quantity τa
 ⁄ τ is denoted by the figures; the number of links in the block is denoted by the sub-

scripts.
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[7] developed in recent decades, to be valid, since this approach relates definite relaxation times to specific molecular
groups. Possibly, for vibrational spectra this representation is true. However, it is obvious that in the case of mechani-
cal relaxation the structure–property relationship cannot be simple and unambiguous. Indeed, as has been shown above,
the position of a mode on the frequency scale is affected not only by the relaxation characteristic of the link, but also
by the surroundings in which it is located with consideration not only of the near neighbors in the chain but also of
those at a larger distance. A rather extended sequence of single-type links demonstrates the Rouse behavior, i.e., the
number of differing modes corresponds to the number of links in this sequence (Figs. 3–5).

This work was carried out with financial support from the Russian Foundation for Basic Research and the Re-
gional Foundation r20001 "Podmoskov’e" (project code 01-03-97001).

NOTATION

i, number of the link or mode xi, coordinate of the ith link of the chain; τi, relaxation characteristic of the ith
link; λ, relaxation time; (λi)R, relaxation time according to the Rouse equation (1); pi = λi

−1, E, elastic modulus of the
Maxwell element; L, chain length; F, force; n, number of links in the chain; t, time; hi, spectrum of relaxation times;
Dn and Bn, determinants; sλtn and sλtw, numerical-mean and weighted-mean relaxation times; γ, ratio of the
weighted-mean relaxation time to the numerical-mean relaxation time; τa, relaxation characteristic of a modified "a"-
type link; M, molecular mass of the polymer; N, number of modes in the relaxation spectrum of monodisperse poly-
styrene. Subscripts: max, maximum; min, minimum; n, numerical-mean; w, weighted-mean; a, "a"-type link.

REFERENCES

1. P. E. Rouse, J. Chem. Phys., 21, No. 7, 1272–1274 (1953).
2. V. A. Kargin and G. L. Slonimskii, Dokl. Akad. Nauk SSSR, 62, No. 2, 239–242 (1948).
3. A. Yu. Grossberg and A. R. Khokhlov, Statistical Physics of Macromolecules [in Russian], Moscow (1989).
4. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics [in Russian], Moscow (1998).
5. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules [in Russian], Lenin-

grad (1986).
6. M. Baumgaertel, A. Schausberger, and H. H. Winter, Rheol. Acta, 29, No. 3, 400–408 (1990).
7. G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers [in Russian], Moscow (1992).

618


